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Reservoir characterisation and risk assessment

3D ge':ologi:al static mbdelling
Estimation of CO; étorage capacity
Laboratory CO: injection-like alteration experiment

Estimation of petrophysical alterations

4D time-lapse rock phvsics and numerical seismic modelling

, “Coupling of the chemically induced petrophysical alteration effect of CO»— hosting rocks
g measured in the laboratory with time-lapse numerical seismic modelling

- Modelling of the possible shape of CO; plume migration in the storage site
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industry-related study programmes (VERT20047)

4. 2021-2022- Hydrogen Storage In European Subsurface (VFP20055)

5. 2020-2022- Routing Deployment of Carbon Capture, Use and Storage CCUS in the Baltic
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[IUT19-22)

12. 2032-20175 The Newsletter of the ENeRG Network (LEPGI 299)
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144 2011-2013- CGS EUROPE, (http:/ /www.cgseurope.net), EC FP7

5. 2006-2009- CO2NET EAST (http:/ /co2neteast.energnet.com), EC FP6
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CO> N GEOSHTERMA LS
ESTONIANSUNCOAVENTTONAL
GLOBALWARMINGEIGHTING

= POSTIMEES MHEHME CNOPT BMAEO KYNBTYPA KPACOTKA LIMON KWHO3AN 3/[0POBbLE BAPEOC g T T S . = -
e ——————e SCIENTISTS KNOW HOW TO SAVE |
| ESTONIAN OIL SHALES ENERGY |
PRODUCTION WITHOUT
I R T A e VRS T E (| HARMING THE ENVIRONMENT,
3HepreTuKy 3CTOHUN He B yLLepb o
3KOJIOTMV, HO UX HE CNbILAT _  __ g¢*

Lo6asneH kommeHTapuii Eesti Energia

He @8R H G O

é Onecs flarawmxa

B CIIIA pa3zpaboTaHb! TeXHOJOTI, 03BoIoNIEe VeTparnTs 90% Bribpocos

\
I OHII HeBEPOSTHO JIOPOIIe.
9 4

Kazbynat LLIoreHOB €O CBOE JOKTOPCKON guccepTauunein, nocssuer
Yrnexnaioro rasa.
®OTO: Onecsa JlarawimHa

B TTY yTBepXAAloT, UTO 3HAKT, Kak peLmTb npot
He3KO/IOrMUHOM CNaHLEeBoIi 3HepreTUKY, He 3aKp

npousBoAcTBo. OAHaKO NoKa yyeHbIM He BHeM/k ;
3HepreTukun. O ToM, Noyemy Tak NPOUCXOANT U K

SPECIAL FORCES OF CO: |
SEQUESTRATION |

- S(

JIENTIST: IT IS POSSIBLE TO ‘
STORE CO: AND RECOVER §
GEOTHERMAL ENERGY IN |

ESTONIAN UNDERGROUND |

= ©O©O0EcstiPievaleht UU0SED ARVAMUS  VALISMAA  ARILEHMBSEASULIK  KULTUUR  SPORT LP

- KLIIMA 31. OKTOOSER 2019

. CO; B atmocdepy. IIx MoxHO npimveHsSTs 11 B JcToHmI. Ho ecTs npobnema: Teadlane: ka EBSti maapﬁues Saaks 002

ladustada ja siis naiteks maasooja toota =

Maasooja tootmine CO; abiga on Alla Sogenova sinul taiesti vdimalik. ,Seda pole ma veel kellelegi Festi raakinud. Ol
juba raakinud teile rohkem, kui peaks!"

RAIMO POOM o
‘%b raimo.poom@epl.ee % JAGA n 56 “
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ESTONIANTUNCONVENTIONALY PRESENTATIONS OF CCUS TO ESTONIAN |
PARLIAMENT MEMBERS-VIKTORIA |
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' NEW NORWEGIAN AMBASSADOR TO ESTONIA, ELSE |

' BERIT EIKELAND, AND COUNSELLOR OF THE ?“

' NORWEGIAN EMBASSY IN TALLINN, OLE OVERAAS, \r

( INVITED RESEARCHERS DR ALLA SHOGENOVA AND |

| DR KAZBULAT SHOGENOV TO THE NORWEGIAN |

| EMBASSY ON 15.10.19 TO DISCUSS ESTONIA'S |
l’l{(DSl’l‘ CTS FOR IMPLEMENTING CCS TECHNOLOGY ],"
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HAM TALLINNA TEHNIKAULIKOOL
IIII” TALLINN UNIVERSITY OF TECHNOLOGY

School of Science
Department of Geology

Estonian-Latvian Transboundary Carbon Dioxide Capture,
Transport and Storage (CCS) Scenario for the Cement Industry

Master thesis

Student: Karl Simmer, 162972YAEM
Supervisor: Alla Shogenova, Department of Geology, senior researcher
Study program: Earth Sciences and Geotechnology

Tallinn 2018

TALLINN UNIVERSITY OF
TECHNOLOGY

D SAPIENZA

QU  UNIVERSITA DI ROMA

North Italian CCS scenario for the
cement industry

Student: Martina Mariani
Supervisors:

Dr. Kazbulat Shogenov, researcher
Dr. Alla Shogenova, senior researcher

(Tallinn University of Technology)

Roma, 2020

oooooooooooooo

Integration of cement plants into CCUS hubs
and clusters in Europe: case study from United
Kingdom

Master thesis

Student: Glea Habicht, 192230LARM
Supervisor: Alla Sogenova, Department of Geology, senior researcher

Study program: Georesourceg

THESIS ON INFORMATICS AND SYSTEM ENGINEERING

Conformity analysis of E-learning
Systems at Largest Universities in
Estonia and Turkey on the basis of EES
Model
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THESIS ON NATURAL AND EXACT SCIENCES B186

Petrophysical Models of the CO, Plume

at Prospective Storage Sites
in the Baltic Basin

KAZBULAT SHOGENOV
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Dr Kazlat Shogg# The founder and 1
research \ at Tallinn Universit)
Department of Geology, with experience |
20 years, has defended his PhD thesis in T§
His PhD is in the field of CCS (CO:2 captl
storage and seismic numerical modeIIin
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d-famous CCUS
3 of only experts
R P20es of more than 15

= ” \ ‘\\4‘) -

weOT 01 the _unique §@é‘w&%‘nal program for students, and
Semeorully supervised a num@»o Wrs and PhD Estonian and international
students. Q\\

She has unique expertise in the world of the full chain of CCUS technology.
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' Development of E-learning and regular courses ‘

and improvement

~ of the particular sessions, e
(conferences, workshops, exhibitions)

region or the country

Devélopmg t ariysﬁpportini ’

improvement of research and dissemination of projects
proposals writing, policies drafts development, scientific
papers, reports, research thesis, etc., improvement.

Participation in the research and dissemination
projects in the field of CCUS, Ho storage, renewable
energy recovery and storage, the synergy of these
technologies

Development of strategical management to make the prospective storage
site more attractive for the publicity, stakeholders and policymakers

—
\- Management service of the geological storage site






THE ROLE OF CeUST
IN CLEAN ENERGY TRANSITION

' @Carbon Capture, Utilisation and Storage |
"' (CCUS) 1S one Of the key teChnOlOgy | Global energy sector CO, emissions reductions by measure in the Sustainable

Development Scenario relative to the Stated Policies Scenario, 2019-70

areas:
® to put energy systems in the world ona | Annual Cumulative, 2020-70
sustainable way | —
, . . . ) i e _ «E
@to meet international climate goals | . — ‘ Enersy
®and to reach “net” zero carbon targets |
I o ’ -(E:I(t:ecmsﬁcauon
| — = - U X
@®CCUS is the only one group of | . bioenergy....
| technologies that can both: |
® reduce emissions in key sectors directly o WO WO A e A
m Avoided demand Technology performance = Electrification = Hydrogen
and | u Bioenergy u Other renewables m Other fuel shifts = CCUS
® remove CO» emissions that cannot be Source: I[EA 2020 EA2020. AN rights resarved.

aV01ded

wonldwide compared with the Stated PO]ICleS transition to net-zero emissions grOwWs
Scenario, which takes into account currenty

national energy- and climate-related policy
|| commitments. |

Wcumulatlve reduction in CO, emlssmns The contribution of CCUS to the

over time, accounting for nearly one-
sixth of cumulative emissions
reductions to 2070




i

MOLIVATIONARORCCUS FRcesut o oercoi G20 B8

C0, emissions per.capita |

Russia: 11.6 t ,‘ (2020)
Estonia: 11.1 t . " Denmark: 4.4 t
Norway, Germany, Poland: 7.7 t | Sweden: 4.2 t
. . . | Finland: 7.3 t | Latvia: 3.9t
Reduction of industrial CO» | > A,

Lithuania: 4.8t

emissions in the atmospherel

,;‘ ; CQO, emissions per cait(ZO) e o
lh i WQRLD 4.6t EUROPE: 5.9

g | Models of Earth's temperature
since 1860 (IPCC, Summary for

Mitigate global climate change g 8| Policy Makers)
induced by greenhouse gases |

'emperature anomalies in °C

(c) Natural + Anthropogenic forcing

'\\ Energy etficiency use

V ' (1) deep saline aquifers
| Renewable energy

% ’t (2) depleted oil and gas fields
CO; Capture and
Geological Storage

(3) geothermal energy recovery



JARBON CAPTURE; UTILISATIONFAND S
STORAGE (CCUS) TECHNOLOGY

Nitrogen

Air recator

Oxygen carrier
Oxygen
Nickel

CO> CAPTURLE™AND
STORAGE PROCESS

Fuel Reactor

OXYEUEL COMBUSTION:
" CHEMICAL LOOPING
COMBUSTION

Acceptance of CO. Capture and Storage,
y Economics, Policy and Technology

P T e



STORAGE (CCUS) TECHNOLOGY

'THE CARBON CAPTURE AND STORAGE PROCESS

g , ¥ CO, capture

Provided by the Global CCS Institute

< CO, transport

-

.. CO, storage |

| STORAGE OVERVIEW

SITE OPTIONS

, Saline formations

> Injection into
deep unmineable
coal seams or
ECBM

Use of CO5 in
enhanced oil
recovery

Depleted oil and
gas reservoirs

TRANSPORT OVERVIEW

CO, capture plant P e Onshore transport

N Y e
TN R
=8 Buffer storage

P

CO; capture plant

Offshore transport

o GRIR e -
oeehesl Offshore transport
. ' v 3R

CO; injection f:—f

To geological storage

Provided by the Global CCS Institute
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CO: USEFOR'EOR'ANDICO>ISTORNGEANS
DEPLETED OIL AND'GAS FIELDS

ENHANCED OIL RECOVERY
o 002 capture

CO5 reinjection J'gr

e Wellhead

Caprock

Miscible
zone

 CO; injection (VRN Provided by the Global CCS Institute

e

WHEN CO: INJEC'I‘EID UNDERGROUND 20%=80% CO2 IS STAYED UNDERGROUND.
HOWEVER; TO PROVE CO: STORAGE, THE STORAGE SITE SHOULD BE
MONITORED BEFORE AND AFTER CO2 INJECTION



C0» PLUME GEOLHERMAL (CPG) PROCESS'

RS
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THE COz PLUME GEOTHERMAL PROCESS

Cooling tower Power generator Power grid

WWW.TERRACOH-AGE.COM



DECARBONISATION OF FOSSIL FUELS
TO ELECTRICITY AND HYDROGEN
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BLCCS = B10-CCS

CO: Biomass Bioenergy
atmphospheric -Energy crop combustion
draw down -Residues or
-Waste .
Biofuel

” : conversion
VAAAAAA

Energ»y

Heating
—>

Transport

CO?I ‘Industry I

Capture Power

Transport |

Storage
-Deep

geologic
formations

BECCS TYPICALLY REFERS TO

o THE N’l‘l* (xl{A’l‘l()\T OF TREES AND CROPS THAT EXTRACT CO:

FROMTHE \' 'MOSPHERE AS THEY GROW

o THE USE ()F, THIS BIOMASS IN POWER AND/OR INDUSTRIAL
PLANTS A
© AND THE APPLICATION OF CARBON CAPTURE AND STORAGE VIA

CO2 INJECTION INTO GEOLOGICAL FORMATIONS

TODAY, THERE ARE 19 LARGE-SCALE FACILITIES IN OPERATION, FIVE
UNDER CONSTRUCTION AND 20 IN VARIOUS STAGES OF DEVELOPMENT.
BECCS CAN BE APPLIED TO DIVERSE INDUSTRIAL SECTORS SUCH AS
COMBUSTION BIOMASS POWER PLANTS, COMBINED HEAT AND POWER

PLANTS, PULP INDUSTRY, BIOMASS GASIFICATION AND ETHANOL
FERMENTATION, WASTE TO ENERGY PLANTS, CEMENT PLANTS, ETC.

-ﬁaﬂhu i 1! Hl H }ﬂﬁ”ﬂﬂf E “ sigh

~ A B https://carbonengineering.com/our-technology/

CAPTURE ,_, PELLETS

WATER | SOLUTION

Air Contactor Pellet Reactor Slaker

|_. CO2 RICH _T !

SOLUTION WATER

PURE CO2

1,0-15t-CO,

(Depending on NG usage)
' —HEAT ->
02—:83
Calcin

NG 10GJ 0GJ
ENERGY Elec 0kWh © 1500 kWh

AIR —
101-CO,

DAC IS A TECHNOLOGY THAT CAPTURES CO: DIRECTLY FROM THE
AIR.

DAC TECHNOLOGY PULLS IN ATMOSPHERIC AIR, THEN THROUGH A
SERIES OF CHEMICAL REACTIONS, EXTRACTS CO2 FROM AIR, WHILE
RETURNING THE REST OF THE AIR TO THE ENVIRONMENT.
THIS IS WHAT PLANTS AND TREES DO EVERY DAY
PHOTOSYNTHESISE.

DAC TECHNOLOGY DOES IT MUCH FASTER, WITH A SMALLER LAND
FOOTPRINT, AND DELIVERS THE CO: IN A PURE, COMPRESSED FORM
THAT CAN THEN BE STORED UNDERGROUND OR REUSED.

THE ENERGY REQUIREMENTS FOR CONCENTRATING CO: FROM SUCH
LOW LEVELS ARE CONSIDERABLY HIGHER THAN THOSE FROM MORE
CONCENTRATED SOURCES (GCCSI, 2020).

AS THEY
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HYDROGEN (H») ENERGY: ¢

Hz= ENERGY
STORAGE

[
{
)

"2 GAS CYLINDERS

i 2 GEOLOGICAL FORMATIONS "WITH GOOD
PRCLAXOLENTCYANKS B «» PETROPHYSICAL PROPERTIES
/ 2ADSORBED HYDROGEN ON MATERIALS S TITTIR TS
Y\ 3E SPECIFIC S 'ACE ) e ¢ .
3‘“ SLIQIARSE SPECIFIC SURFACE AREA 2 DEPLETED OIL OR GAS RESERVOIRS
R B ELDAS e AL STEES AN o CAVERNS (EXCAVATED OR SOLUTION MINED
- o ROCKS SUCH AS SALT, COAL, IGNEOUS AND
» CHEMICALLY BONDED IN COVALENT AND TSI RS - :

IONIC COMPOUNDS

oTHROUGH OXIDATION OF REACTIVE
METALS



HYDROGEN (H2) ENERGY ST(DI{AGE

AQUIFERS ANU
JEPLETED FIELJS
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THICKNESS i
OF RESERVOIR:
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|4

AREA: 0.3-60 KM=

" REQUIREMENTS FOR |
UNDERGROUND HYOROGEN |
ORAGE |
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MIN 1@ MJ FOR CARSONATES
MIN S@ Md FOR
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STORAGE
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climate change.
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Reservoir characterization and risk assessment
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o Modelling of the possible shape of CO; plume migration in the storage site
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Selection of CO- geological s
Rock sampling

Measurement of geochemical and pe!rophysical prI opergles

Reservoir characterization and risk assessment

Se lect;on
data collecti

of storage sites and

- Characterization of the selected

structures 3D geological static ﬁlodelling

* Estimation of the influence of Estimation of CO» storage capacity

rocks p— . P, —e—
operties Laboratory CO: injection-like alteration experiment

Estimation of petrophysical alterations

cal seismic 10 "l
itori 4D time-lapse rock physics and numerical seismic modelling

hostmg rocks measured in the laboratory with tlme-lapse numerlcal seismic
modelling

Modelling of the possible shape of CO; plume migration in the storage site
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Fig. Depths of top of Cambrian aquifer
(modified after Sliaupa et. al, 2008)
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Lithuania (modified after
Shogenov et. al, 2013b)
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. Reservoir characterization and risk assessment
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Estimation of CO» storage capacity

Estimation of the inﬂuence of
CGS on the properties of rocks

Objectives

Dobele onshore structure

erical seismic 1M Geological section of Dobele structure

m 0T 4
v W A } Well 5 Well 1
» Q
p 0 3 -
/ 8 km

Fig. Prospective [Fyw™
structures for CO>
geological storage
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Fig.12. Geological cross-section
of the Dobele onshore structure
(LEGMC, 2007)
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Fig. Structural map of the Dobele onshore local structure (modified after outh . ST
= néukalns

Shogenov et. al, 2013a)
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Fig. Prospective structures in the Cambrian aquifer and
Incukalns underground natural gas storage (UGS) in Latvia
(Shogenov et. al, 2013a)




Geological section of Dobele structure
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‘ storage sites
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CGS on the properties 217 X Laboratory CO: injection-like alteration experiment i

Objectives

Estimation of petrophysical alterations

h - Numerict cal seismic modelting 0 s
IV su ort the moni:e itori 4D time-lapse rock physics and numerical seismic modelling Fig. Cross section of the studied wells showing

Coupling of the chemically induced petrophysical alteration effect of CO~ |the correlation of the Deimena Formation

hosting rocks measured in the laboratory with time-lapse numerical seismic |ragervoir and Zebre Formation primar cap
modelling y

rock
Modelling of the possible shape of CO; plume migration in the stogaeesi Offshore
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Fig. Location of Latvian
onshore structures
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Cambrian aquifer and the
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et. al, 2015)

e ~S. Kandava -
\)eQ E6 Ciepaja Dobele

“ Gdansk - Kura

Depression




[Caboratony research

l
s .y ., ;
W Measurement of geocHemlcal and pml properties | 1

Reservoir characterization and risk assessment

Selection of CO» geological stora{ge sites

Rock sampling

- Characterization of the selected
structures

3D geological static ﬁlodelling

* Estimation of the influence of Estimation of CO» storage capacity

i ocks w—— 5 p— w— —
CGS on the properties 2.0 Laboratory CO: injection-like alteration experiment

| cal seismic modelling t0 Estimation of petrophysical alterations
sel G | :
1A% Z‘“mf,r:t the monito it 4D time-lapse rock physics ae— —— .

-eff GW'SCIGﬂtla

‘workd-leading independent review. Global Scies ology

Coupling of the chemically in —[;'
hosting rocks measured in the=="
modelling

#rot. Bernhard G. h—l H-I‘m
e Panck sttt b iy

| —
Modelling of the possible sha=—

0 ) . \‘ \\ -.‘ : <
Estlmatlon of petrophysmal parameters _—
“ — g 0 —
4 1 Sohd Volume (Vs): gas dlsplacement | "}-\ : /
“ \‘ B \ 2l
| helium pycnometer AccuPyc 1330 ! & \ " gt
. . ey . — ‘ il provide
J 2. Grain or matrix density: p; = m / Vs ! t‘\ iy - i
3. Total volume (Viotal): powder pycnometer | t ~
GeoPyc 1360 =
| 4. Density of dry samples: Pary = 11/ Viota gl Al ects 1 S 55 g oyt of
| /I Aa 1432 j on my rock samples that represent an important part
5. Volume of pores: Viore = Viotal = Vs | o[ W ey
6. E ff ec t ive p Oorosi tV ( % ) . goef = (Vpore / Vtoml) X ‘ | “ | - : = IFPEN laboratory in Rueil-Malmaison, France).
- e of individual
‘ 100 | = eportwillbe  €0,GeoNet Open Forum - European
; va Permeablhty (mD) Darcy ]aw f /J/;;u ¢ P on the (GS top event on (0, storage research

| Koas = Q x (1/S) X prgas X ((2 X Patm)/(P12

Institute of Geology at Tallinn University of Technology - Geochemical analyses:
Titration method: CaO, MgO; Gravimetric method: Insoluble residue

- Thin-section study (TEM, SEM)

IFPEN (French Institute of Petroleum), France Rock physical analyses:
Grain and bulk density, porosity, permeability, V, and V¢

Acme Analytical Laboratories Ltd. (Vancouver, http:;//acmelab.com), XRD, XRF (SiO,, Al,O;, Fe,Ostotal, K,O, Na,O, MnO, TiO,, P,O;, Ba)




Selection of CO» geological storage sites

D Maristone

/\ Uimestone

O shale

d------b-----‘---A----

>

10 20 30 40 50 60 70 80 90 100
Insoluble residue (%)

<> Sandstone
D Marlstone

A Limestone

'
'
'
-

01020304050607080901(0

Insoluble residue (%)

Permeabi'lity. mD

Rock sampling

E——

Reservoir characterization and risk assessment

3D geological static modelling

ey eeeeamesee ey

15 18 20

Porosity, %

23 25

15
Porosity, %

18 20 23 25

Fig. (a, b) Composition of the
studied rock samples before the
alteration experiment

Fig. Petrophysical properties of
the reported and measured
sandstones before the alteration
experiment (Shogenov et. al,
2015). Data are based on 115
sandstone samples from the
Deimena Formation of 2 offshore
and 3 onshore structures from 7
boreholes
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S
Measurement of geochemlcal and petrophysical properties
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Fig. Example of thm-sectlon photos (10x (A) and 50x (B)
zoom, in Epi-illumination polarized light) sample E6
876.7 (made at TUT GI 1lab) (A: not published; B:
Shogenov et. al 2013a)

Fig. Example of SEM microphoto-graphs of the thin
section of Deimena sandstone sample in well E7/1-82
(1390.5 m) E7 structure (Shogenov et. al, 2013b)
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Rock sampling Laboratory researCh |

— —_

Measurement of geochemical and petrophysical properties

Reservoir characterization and risk assessment

3D geological static modelling

Estimation of CO» storage capacity

Laboratory CO: injection-like alteration experiment

Estimation of petrophysical alterations

X-ray diffraction (XRD) {
analy31s

4D time-lapse rock physics and numerical seismic modelling

Coupling of the chemically induced petrophysical alteration effect of C¢
hosting rocks measured in the laboratory with time-lapse numerical sei§mi
modelling

LAS (VAN11001769)

Il Fig. XRD analyses
showing high
Kn279988 content of SiO2,

E6 860.4

A Quartz - SO, Quartz - SiO2 interpreted as
: P ) ~ {70% - by XRE) abundant quartz
: Fig. XRD analyses content in sandstone.
showing high content | & One small  peak
- reparation’ of SiO,, interpreted as reflects minor calcite
essentially pure quartz content (cement) in
N R ™ | sandstone (sample the sample (sample
] 7 SN RSN | 5004 well E6-1/84) 998.8, well Kn27
R Fig. XRD analyses
howing high
E7 1390.5 F S
Kn24 1157.3 content of Si0O2,
Quartz - SiO2 : -
(97,16% - by XRF) Quartz - SiO> interpreted as
; J, : _ _ (81 % - by XRF) almost pure quartz
gmHemimorphite- e lll\\‘ Flg XRD analyses § | Ankerite - i sandstone. One
Zn[Si:07] (OH)xH:O 7 showing high content | EEIVEICeRR small peak reflects
. of SiO2, interpreted as A ot
nearly pure quartz e teYin the
sandstone (sample sample (sample
- 1390.5, well E7-1/82) 1157.3, well Kn24)




Selection of CO> geological storage sites m—
Z Reservmr characterlzatlon

Rock sampling

R
Measurement of geochemical and petrophysical properties —

Se lect;on

of storage sites and

__datacollection -~ "' |

- Characterization of the selected
structures

|39 samples |
7 boreholes (offshore E6-1/84 and E7-1/82 |
| and onshore Kn24 and Kn27, Db9l and
| Db92, and Liepaja-San) |

1|
< Reservoir characterization and risk assessmen!l New classification

3D geological static modelling

|
Estimation of CO» storage capacity

Laboratory CO: injection-like alteration experiment

./

Estimation of petrophysical alterations

X 4D time-lapse rock physics and numerical seismic modelling - 127 sampl es

q>ef- |28 samples
| grain density - 102 samples
‘ bulk den5|ty - 129 dry samples

Coupling of the chemically induced petrophysical alteration effect of CO>—
hosting rocks measured in the laboratory with time-lapse numerical seismic
modelling

Modellmg of the possible shape of COz plume mlgratlon in the storage site

Hydrocalrgggl rlegsgg\;mrs e CO, storage standards* Classification of the studied rocks for CO, storage™*

Groun| Class Reserv01r Grouol Class Reservoir (Ero Application for Reservoir
P quality (%) P quality (%) CGS quality (mD ) (%)
>20

High >500 >25 _ High-1 220 |
Very high>1000 >20 Proferred  >300  >20 { Very appropnate I High-2 >300 9-20 |

500—-

High 1000 18-20 Good 50-250 15—20 Good >18

00— 2 Appropriate 100—-300

Average ;00 14-18 Moderate  50—250 10—15 Moderate 9-18

Cautionary-1 18-23
3 Cautionary . 10—-100
Cautionary-2 7-18

10— : <200
IV~ Reduced 100 8—14 Cautionary <50 <10 l

A%
VI  Verylow <1 <2 4  Not appropriate

Very low <1 <18

‘
i
|
\
Low 1-10 2-8 Low <10 <15 ’ Low 1-10 7-18
l
|

*CO2 storage standards modified after Van Der Meer (1993), Chadwick et al. (2006), Vangkilde-Pedersen & Kirk (2009), Tiab &
Donaldson (2012), Halland et al. (2013): group 1, acceptable for CGS; group 2, cautionary.
**New classification based on the studied data (reported and measured in laboratory before the alteration experiment)
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estimated closing contour of the structures.
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Petrel® software:

etrophysical modellin
P r S To populate the model with facies and petrophysical
M properties, three modelling algorithms of Geostatistical
: : Size: Software Library were applied (Deutsch & Journel, 1998):
Volumetric grid 293715 m (X-axis) e
parameters - 26534 m (Y-axis) | ® Truncated Gaussian Simulation
implemented in 5826&1“ (Z-axis) | ® Sequential Indicator Simulation
the 3D cpth range: | ® ian R Functi
. 693 - 1519 m | @ Gaussian Random Functon 4
geological Area: 541 km? e
modellmg Cells dimension: . _ 500 oo
500 x 500m Pk
Cells: 67 x 59 x 10 Limestone
Total number of 3D g
CeHSZ 39530 Sandstone-1

i
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Fig. (a) 3D geological static facies model of the E6-A compartment of the E6 offshore structure with
location of the well E6-1/84. All layers of the 3D model are shown. The white line A-B represents
the geological cross section shown in Fig. 4b-d. Cross sections of (b) facies, (c) porosity and (d)
permeability distribution along the line A-B
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Fig. (a) 3D geological static

compartment, showing the
lowermost layer 10 of the
Cambrian Deimena. (b) 3D
geological static porosity
model with the lowermost
layer 10 of the Deimena
Formation
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S I g:::;ﬁf:’s"“hm of the selected 3D geological static modelling
o | 2 -
O Estimation of CO- storage capacity
© pu—
0 | Laboratory CO; injection-like alteration experiment
O ) Estimation of petrophysical alterations

4D time-lapse rock physics and numerical seismic modelling

hosting rocks measured in the laboratory with time-lapse numerical
modelling

Modellmg of the possible shape of CO» plume mlgratlon in the storape site

ST Sy —
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Coupling of the chemically induced petrophysical alteration effect oﬁ ECOZ_
eismic

- S
* Conservatlve approac

High quality
reservoir for carbon dioxide)

Based on Monte Carlo
simulations (US Department
-------- g} e of Energy (DOE) 2008.
@Ml Methodology for development
------- R, UVl of geological storage estimates

Low quality

reservoir

“Volume of bulk reservoir shall be 5-10 times the volume of the reservoir
— == Fault

Figure 4: Illustration of the “cartoon approach™ for storage efficiency factor.

Fig. Illustration of the ,Cartoon
approach” for storage efficiency factor
achu, S. et al. 2007. International Journal
of Greenhouse Gas Control, 1)
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Table. Storage efficiency factors for
trap volume (%) estimated for the
studied structures according to
Optimistic and Conservative
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Fig. Estimation of in situ CO; density
in reservoir conditions (Bachu, 2003)




Selection of CO» geological storage sites

Rock sampling

- » n T——
Measurement of geochemical and petrophysical properties

Selechon of s

to
data collect. Tage sites and

Reservoir characterization and risk assessment
- Characterization of the selected D geological static modellin
s tructures 3D geological static modelling

Laboratory CO:z injection-like alteration experiment
Estimation of petrophysical alterations

4D time-lapse rock physics and numerical seismic modelling

Coupling of the chemically induced petrophysical alteration effect of CO»-
hosting rocks measured in the laboratory with time-lapse numerical seism

modelling

Modelling of the possible shape of CO; plume migration in the storage site

Estimation of CO- storage capacity

T I ——————
CO; storage eapac1ty

Structure

Depth
m

Thickness
m

Area,
km?

CO2 storage capac1ty

Mt

Aizpute

1096

65

51

14

Blidene

1050

66

43

58

Degole

1015

52

41

21

Dobele

950

52

67

56

Edole

945

71

19

7

Kalvene

1063

45

19

14

Liepaja

1072

62

40

6

Luku-Duku

937

45

50

40

N. Kuldiga

925

69

18

13

N. Ligatne

750

50

30

23

N.Blidene

920

40

95

74

S.Kandava

983

69

44

Snepele

970

30

26

17

Table.
Properties of
Latvian
onshore
structures
most
prospective
for CO,
storage
(Shogenova
et al., 2009)

Mcozt AXhXNGXq)choerSef

Reservoir parameters

CO: storage capacity (Mt)

S Depth Thickness Trap area Salinit Pressure T COZ. SerOpt/ Optimistic estimates Conservative estimates
tructure of top (m) (km?) @) (mPay) (°C) density  Cons. .
(m) Ji& (kg/m?) (%) Min Max Mean Min Max Mean
E6-A 848 53 553 99 9.3 36 658 10/4 243 582 365 97 233 146
E6-B 848 53 47 99 9.3 36 658 4/2 8 20 12 4 10 6
E6total 848 53 600 99 93 36 658 120; Y4 o510 602 377 101 243 152
E7 1362 58 43 125 14.7 46 727 20/4 14 66 34 3 13 7
Total CO; storage capacity of the studied offshore structures (Mt) 265 668 411 104 256 159
S. Kandava 933 42 97 113 10.5 245 820 15/4 5 122 95 1 32 25
Dobele 950 52 70 114 13 18 900 20/4 56 145 106 11 29 21
Total CO: storage capacity of the studied onshore structures (Mt) 61 267 201 12 61 46
Total CO; storage capacity of four structures (Mt) 326 935 612 116 317 205
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Se lect;on

of storage sites and
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V/
/

tl) Reservoir characterization ana risk assessment

g ) gthrz;‘::f:':z“ﬁ‘m Diitiesgen P 3D geological static modelling

opm{ \ e —

k3] Estimation of CO» storage capacity

(P e ——
\ Laboratory CO: inj jection-like alteration experiment
®

Estimation of petrophysical alterations
4D time-lapse rock physics and numerical seismic modelling

Coupling of the chemically induced petrophysical alteration effect of CO>— |
hosting rocks measured in the laboratory with time-lapse numerical seismic
modelling

Modelling of the possible shape of COz plume mlgratlon in the storage 51te

"

The “alteration” expenment or retardec AT) with placement of samples into
the acid solution, simulating CO2-rich brine in aquifer was conducted at IFPen:

- flushing of the sample with fresh retarded acid at ambient temperature (amount equivalent
to about 3 times the sample porous volume);

- activation of the acid under temperature (60°C for at least 1 day);

- flashing of the sample with NaCl brine at ambient temperature (= 3 times the sample
porous volume)

- drying samples in an oven for 3 days
—~ Procedure was repeated 3 times

Device and process: (Egermann et al. 2006, Bemer and Lombard, 2010)

© Total 15 reservoir rock and transitional cap rock samples from 5 wells (offshore E6-1/84
and E7-1/82, and onshore Dobele and South Kandava 24 and 27)

© Bulk and grain helium density, helium porosity, gas permeability and acoustic P- and S-
wave velocities in dry samples, the chemical and mineralogical composition and surface
morphology were studied in the samples both before and after the alteration experiment
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Modellmg of the p0551b1e shape of CO: plume mlgratlon in the storage site

Reservoir Welght Bulk dens1ty Grain den51ty P0r051ty Permeablllty
ua11 class kg*10-3 kg/m3 kg/m? % m/s

237 440
30.0 290

241 400

124 23

77 18

I - . 8 24, 3 134 66

\ . 6 15. 9 139 46

r . 9 24, 2 122 16

g . J 24 1 110
13.3
9.6 0.28
19.1 0.001

Before, samples measured before the alteration experiment; after, samples measured after the alteration experiment; Vp, P-wave velocity; Vs,
S-wave velocity; * clay-cemented; ** carbonate-cemented sandstones from the South Kandava structure;

Bold and italic numbers in the table correspond, respectively to ‘reliable’ and ‘not reliable’ changes in petrophysical parameters after the
alteration experiment according to measurement errors. ‘Not reliable’ values also correspond to the parameters not subjected to alteration.
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' Fig. 2D geological model, applied in the seismic modelling. Extrapolated

| |Gei, 2013, Shogenov et. al, 2016)

from the E6 seismic section with well E6-1/84 in the centre (Shogenov &
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Depth T

Formation Litholo

Sea water - 0 10 0.1 1030 -

Devonian Sandstone 36.5 7 0.8 2226 15 2 2474 1133 66 18

Silurian Carbo“ate 80 31 63 2244 616 <01 2570 1043 71 16 244 -

WEDIGERACIRIT el ooy W2 s an g g 6 2970 1395 95 28 456 -

ea water

.z e Ordovician (Cap rock) gj;rlz‘;“ate 725 35 g6 2540 3 <001 2628 1093 74 17 304 -
0.4 - ' 3
G — ] \ Deimena (Reservoir-1)  Sandstone 848 37 93 2341 21 160 2836 1400 250 94 459 421
g 112 N Qlieservet /] - Reservoir-1 Deimena (Reservoir-2) Sandstone 876 37 9.7 2400 17 60 2873 1349 761 255 437 4.00

- Reservoir-2 ‘Deimena (Reservoir-3)  Sandstone 885 37 9.8 2306 25 230 2872 1510 211 87 526 4382

- Reservoir-3

— Cambrian Siltstone 901 38 10 2324 3-18 0.2-23 2746 1675 81 40 6.52 -
Cambrian Deimena Sandstone Formation Basement Granite 1018 41 11.2 2675 - = 5800 3454 362 171 319 -

1.2 Basement
1.4

* Depth of the top of the formation in well E6-1/84
All formations except for the Oil reservoir are saturated with brine. Temperature (7) and pressure (P) of the formations

top; Pue — the bulk density of brine-saturated rock samples; ¢, — effective porosity; k¥ — permeability; Vp and Vs —
compressional (P) and shear (S) waves velocities, respectively; Op and Qs — quality factors of P- and S-waves,

\ respectively; u and K, — shear and bulk modules of dry rocks, respectively (K, estimated only for reservoir
formations).

Table. Characteristics and physical properties of the main rock formations
’ shown in the seismic model

pwet ¢ef K VP VS K. dry

Formation Lithology (kg/m3) (%) (mD) (m/s)  (m/s) Or Os u (Gpa) (Gpa)

Reservoir-1 Sandstone 2270 23 140 2743 1319 189 68 3.95 3.62
After alter ation Reservoir-2 Sandstone 2388 16 90 2856 1283 1163 360 393 3.61

Reservoir-3 Sandstone 2188 30 280 2735 1415 202 81 438 4.01

All reservoir formations are saturated with brine

Table. Estimated seismic (poro-viscoelastic) properties of the reservoir rock
formations after the alteration experiment shown in the seismic model
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| OTHER FORMATIONS

! L% Non-reservoir properties estimation ‘\\I

Dry P-wave velocities (V,,, ), dry bulk density (p, ), density of rock solid To evaluate specific properties of non-reservoir layers we have
part (p,) and porosity (@) were estimated using measured properties at IFPEN used reported active seismic data (V, ) and reported laboratory
peiropﬁysica| laboratory (Shogenov et al., 2013a) and reported data. Dry measurements of dry and wet scmp|esh{ il reservoir), obtained from
S-wave velocities (Vy, ) and in situ rock physical parameters of CO, storage the well E6-1/84, and reported measurements of more than 2000
reservoir rocks, as wet P- and S-wave velocities (V,_, and V,_, respectively), samples of Baltic Basin (Shogenova et al., 2001).
wet bulk density (p, ), wet bulk modulus (K,_) and shear modulus (p) were
estimated by rock physics theories: ; 4

(1 _ Krlr\' )2 K(Ir)' = VP:fn- X p dry E!‘ldr)' ! III
%
] - ¢ K:ln' !

Y

+
K, K,

Devonian sandsiones

V.., =0.804 x V, —0.856 (km/s) , Xl

: pdry=m/vfofal ’ Iv
Kp=c"xp, , ¥

2
lu’dr_\' = VS(Ir_v X p drv 4 v'

V ry
p(wt'l/dr\" VS‘I'_.\' = ]P‘;’a 4 VII
T~ pwct=psx(l_¢)+pﬂx¢,VIll o

Py = p,+5(0.668+0.445+10-6(300P- \ _ ) IX
2400P5+T(80+37-33008-13P447PS))) + X =M/ (Vo= Vpored 1

p,=1+10-6(-80T-3.372+0.00175T3+489P-2TP+0.016T2P-1.3 » 10-5T3P-0.333P2-0.0027P2) , XI
K,-bulk modulus of brine at in situ conditions, ¢ -speed of

, XV

(wet /dry) + 3 M‘( wet=dry) I
———————————————— 7

VP (wet /dry) =

=-0.055%xV?

Pwer

+1.017xV,

Pwet

-1.031 (km/s)

V Hary sound in the fluid at in situ conditions within the Eé reservoir . -
Pue o XII (1633m/s), K,-bulk modulus of rock sample grains. Average P =1.6612xV,  -04721xV,,  +00671xV,,  -00043xV,  +
K, of quartz = 37 GPa, m-sample weight (g), V,rsample 0.000106 x V° , XVII (kg/m?)
total  volume (ecm?®), V. _-sample pore volume (cm®), pydensity o L -
brine at in situ conditions (within the reservoir layers 10667 kg/m?), =S V.., =0.7858 12344 xV, , +0.7949xV,  -0.1238 x V, , + =
S—weighf fraction (ppm/1000000) of sodium chloride(99000 ppm) ‘ 0.0064 x V* XVHI (km/s
" Pwet /

| -

Fig. Example of (a) reservoir and (b) non-reservoir petrdi)h%iiicial’,iﬂfagtri()?-a?cioflisftiigaili and seismic IT.)I‘OEei'EIES
estimation (Shogenov & Gei, 2013)




Reservoir properties estimation

Dry P-wave velocities (V,,, ), dry bulk density (p, ), density of rock solid
part (p,) and porosity (’) were estimated using measured properties at IFPEN
peiropFlysiccd laboratory (Shegenov et al., 2013a) and reported data. Dry
S-wave velocities (Vg ) and in situ rock physical parameters of CO, storage
reservoir rocks, as wet P- and S-wave velocities (V, ,and V., respectively),
wet bulk density (p, ), wet bulk modulus (K__) and shear- modulus (B) were
estimated by rock physics theories:

4
"
( l _ Kr!r\' )2 > Kdl"\‘ - VP dry X p dry - 5 ol'tdr.\' / III

K
=K, + g ||
! ¢ o 1- ¢ - K ' pdry=m/vfofcl ’ lv

K, K, Ke Kﬂ=c2xpﬂ vV

/

\
4 >
K + M — = My = V4 X Py, VI

(wet=dry) I
!

(wet/dry)
N 2 Vi
Vb(wet 1dry) —\ — \ V. =t I
(wet /dry Sdry l 7 ';
T pwcl=psx(l_¢)+pﬂx¢, VIII o

D, = p.+5(0.668+0.445+10-6(300P- x\ o=m/(V. -v_ ), IX
s f /

2400PS+T(80+3T-3300S-13P+47PS))) otal~ ' pores

p,=1+10-6(-80T-3.3T2+0.00175T3+489P-2TP+0.016T2P-1.3 » 10-5T3P-0.333P2-0.0027P2) , X|

K.-bulk modulus of brine at in situ conditions, ¢ -speed of
sound in the fluid at in situ conditions within the E6 reservoir

u

' dl'_\'

o... , Xl (1633 m/s), l(o-bulkmodulusofrocksampleFrains.Avera e

K, of quartz = 37 GPa, m-sample weight (g), V,,,-sample
total volume (cm?®), Vpor -sample pore volume (cm?®), p,-density of
brine at in situ conditions (within the reservoir layers 1066.7 kg/m3),

S-weight fraction (ppm/1000000) of sodium chloride(29000 ppm)
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Fig. Estimated petrophysical and seismic properties of the Deimena
sandstones versus CO; saturation for different reservoir sub-layers
(Reservoir-1, -2 and -3) without (a-1, b-1, c-1, d-1 and e-1, respectively) and
with petrophysical alteration effect (a-2, b-2, c-2, d-2 and e-2, respectively).
Brine and CO; are the saturating fluids (NOT PUBLISHED DATA)
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Trace number
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Fig.42. Example of snapshots
at 0.1, 0.2, 0.3, 0.4, 0.5 and 0.7
seconds of the plane-wave
simulation of the 1st scenario
(Uniform model without the
alteration effect) before CO;
injection. Seismic reflections
of geological layers are shown
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Fig. (a, b, ¢, d, e, f). Synthetic plane- and 90% (I-E) of CO: in the porous space
wave sections of Scenario 2 presented on the left part of the figure (I). The
(Uniform model with the alteration corresponding NRMS sections are shown on
effect) with 0% (a), 1% (b), 5% (c), the right part in panels (II-A), (II-B), (II-C), (II-
15% (d), 50% (e), 90% (f) of CO; D) and (II-E), respectively. Panels are focusing
saturation on reservoir level of the section
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| L. The reservoir rocks in the studied structures onshore Latv1a (South Kandava and Dobele) and in [
ﬂ the Baltic Sea (E6 in Latv1a and E7 in thhuama) were estlmated as prospectlve for gas storage 1

I __ ~ 5 - ¥J
—— =— = _ —— — _ _

Depth () E6-1/84; 848 0 m

T N\E South

! 641050 m

— S\ & Kandava

Dobel

-1346.5 m

4km 6km 8km 10km 12km 14km



1 IL Basled on the récently and earlier measured gas permablllty and por051ty, a new classification | |
|\ of the reservoir quality for CGS was proposed for sandstones of the Deimena Formation of |

| Cambrian Series 3 in the middle part of the Baltlc Basm {
IL _— E—

—

Classification of the studied rocks for CO, storage™*
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| IIL.The reservoir sandstones of the Deimena Formation in the Dobele onshore structure was §
| characterized by ‘high-2" estimated average reservoir quality, assessed as ‘very| |
appropriate” for CGS (average porosity 19% and permeability 360 mD). The reservoir §
| sandstones in the South Kandava and E6 structures had an identical average porosity of |
21%, but their average permeability differed twofold, being 300 and 150 mD, respectively. |
The good reservoir quality of sandstones in these structures was assessed as ‘appropriate’
for CGS. The reservoir quality of the sandstones of the E7 offshore structure, estimated as
‘cautionary-2” (average porosity 12% and permeability 40 mD), was the lowest in the
studied structures and was assessed as ‘cautionary”’ for CGS
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V. The optlmlstlc maximum and average storage potent1als of the E6 structure (602 and 377 Mt) 4
. and its larger compartment E6-A (582 and 365 Mt) are higher and nearly the same as the 4
previously reported total potential of all 16 onshore Latvian structures (400 Mt). Even the §
average conservative capacities of E6 (152 Mt) and E6-A (146 Mt) are the largest among all ]wi |
Latvian onshore and offshore structures studled unt11 NOW. i
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!‘ V. The E6 structure offshore LatV1a was estimated as the most prospectlve for CGS in the Baltic ]
Cambrran Basm accordmg to the reservoir thlckness area, quallty and storage capac1ty
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Reservoir temperature in situ - 36°C

Density of CO; in situ - 658 (kg/m3)
Net Gross ratio of aquifer - 0.90
Reservoir pressure in situ - 9.3 mPa
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!‘ V1. The novelty of the applled seismic numerlcal modelllg approach was the couplmg of the
chemically induced petrophysical alteration effect of CO; hosting rocks measured m
laboratory w1th t1me-1apse numerrcal seismic modellmg
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